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Abstract—Development of the REE Commercial Off The
Shelf (COTS) based space-borne supercomputer requires a
detailed knowledge of system behavior in the presence of
Single Event Upset (SEU) induced faults. When combined
with a hardware radiation fault model and mission
environment data in a medium grained system model,
experimentally obtained fault behavior data can be used to:
predict system reliability, availability and performance;
determine optimal fault detection methods and boundaries;
and define high ROI fault tolerance strategies. The REE
project has developed a fault injection suite of tools and a
methodology for experimentally determining  System
behavior statistics in the presence of application level SEU
induced transient faults. Initial characterization of science
data application code for an autonomous Mars Rover
geology application indicates that this code is relatively
insensitive to SEUs and thus can be made highly immune to
application level faults with relatively low overhead
strategies.
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1. INTRODUCTION

The objective of the Remote Exploration and
Experimentation (REE) Project is to bring supercomputing
technology into space. It has twin goals of:

1. demonstrating a process for rapidly transferring
commercial Commercial-Off-The-Shelf (COTS) high-
performance computing technology into ultra-low power,
fault tolerant architectures for space and

2. demonstrating that high-performance onboard processing
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enables a new class of science investigation and highly
autonomous remote operation.

The REE project is employing mainly (COTS) hardware and
software components, and relying on Software-Implemented
Fault Tolerance (SIFT) to mitigate the effects of radiation-
induced errors. Natural space radiation can cause soft errors
known as Single Event Upsets (SEU’s) in non-radiation-
hardened electronics. Thus, REE’s primary reliability
concern is the detection and mitigation of SEU’s.

To provide ease of mission insertion, flexibility in
configuration, straightforward upgrade as the state of the art
progresses, and for ease of fault tolerance insertion, REE’s
architecture of choice is a cluster computer. The intent is to
leverage the considerable technology investments made in
commercial cluster computers and to augment or modify the
standard commecial cluster architecture as necessary to
provide enhanced reliability for the embedded spaceborne
environment. A cluster computer consists of interconnected
stand-alone computers working together as a single
integrated computing resource. Some of the salient
characteristics of cluster computers are: multiple high
performance processors with local memory, fast network
interconnects, high-bandwidth/low-latency commumnication
protocols, a standard Operating System (OS) on each
processor, access to shared mass storage and a convenient
parallel programming environment.

Figure 1 shows the baseline REE architecture comprising a
set of processing and mass memory nodes which are
multiply interconnected via a high speed switched network
fabric. Bach processing node consists of two state of the art
processors, eg. PPC750’s or G4’s, a large local memory and
a network interface. In addition to network low level
interconnect functions, the network interfaces also provide
high level /O handling protocols such as Message passing
Interface (MPI) so that the node processors may be off-
loaded from relatively mundane IO tasks. The mass
memory nodes provide a large (several GigaBytes) non
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Figure 1: REE Cluster Computer Baseline Architecture

volatile memory for the system. Multiple such “disk
emulators” are provided for parallel high speed access by
the processing nodes as well as for fault tolerance support.
The spacecraft interfaces to the REE computer via these
mass memory nodes through the inclusion of a custom I/O
controller in each mass memory node, thus providing
mulitiply redundant interconnections to the spacecraft data
and housekeeping busses. The spacecraft control computer
and instrument controllers view the REE cluster as a mass
memory device. Instrument data and processing commands
are written, as files, to the mass memory while processed
data and REE status are accessed as file read opeations. The
spacecraft housekeeping bus is extended to the individual
nodes of the REE computer to facilitate externally
commanded diagnostic proceedures by the Spacecraft
Control Computer (SCC). It is both noteworthy and
serendipitous that advanced processor architectures are
increasingly ~ implementing low level fault
detection/protection mechanisms and some of these
mechanisms are baslined into the REE architecture. These
include Single Ermror Correct Double Error Detect
(SECDED) Error Detection and Correction (EDAC) on
local memories, parity protection on external caches,
exception detection in Arithmetic and Logic Units (ALUs)
and Memory Management Units (MMUs), and watchdog-
configurable timers.

The development of an effective and efficient fault detection
and mitigation strategy for REE requires a detailed
knowledge of fault: types and rates, propagation paths,
behaviors and  probabilities. These characteristics are
dependent on the hardware used to implement the
architecture, the radiation environment, the system and
application software, and their interactions. In order to
investigate these issues, a method utilizing experimentation
to obtain fundamental effects, and modeling to predict
system level behavior, performance, reliability and
availability has been developed. The following section
explains the overall REE experimentation and modeling
methodology and tool set.

2. METHODOLOGY OVERVIEW

The REE project requires a means for trading off
performance and power utilization versus reliability and
availability. The method must be generally applicable to
alternative architectures and applications and, once
developed, relatively straightforward to implement. Unlike
traditional fault tolerant systems, a degree of unreliability or
unavailability, i.e., .95 or .99 rather than .99999 is often an
acceptable reliability figure for REE applications. On the
other hand, it is imperative that the system fault behavior
and reliability be accurately predictable. The mission system
engineer must be able to ‘dial in’ a desired level of
reliability and fault behavior based on mission phase and
criticality. Thus, a methodology is required which will
allow characterization and modeling of probabilistic system
behavior, reliability and availability under varying
applications, environments, loads, and operational scenarios.

Figure 2 shows the methodology and tool set developed for
the REE project and is explained below:

Radiation effects experiments are performed on the
hardware components to determine subsystem level
radiation sensitivities. Results for a processor, for example,
include fault rates for the L1 data cache, the L1 instruction
cache, the General Purpose Registers (GPRs), the Floating
Point Registers (FPRs), the (MMU), etc.

The results of the radiation experiments are used to develop
a radiation fault model. This model is used to predict the
fault rates that will occur in a given radiation environment
(e.g., Low Earth Orbit, Geosynchronous Orbit, Deep space,
Solar Flare, etc.). The model provides the number of faults
per unit time per subsystem.
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Figure 2: Overall REE Methodology Block Diagram

of an SEU occurring in a given subsystem. Essentially, the
process of generating the etror model is one of listing all
possible faults and then, by analysis, propagating each fault
through the hardware to the first point at which it impacts
software or system operation. The emphasis of this effort is
on subsystems into which faults cannot be directly injected
with Software Implemented Fault Injection (SWIFI). Thus,
it is not necessary to trace every possible error resulting
from a general -purpose register bit flip. It is however,
necessary to list all the possible outcomes of SEUs in MMU
and cache address translation registers, cache tag rams, etc.

The Hardware Utilization Model, provides a means for
determining the software (hardware utilization) dependent
probabilistic fault propagation statistics and the method by
which SWIFI fault injection techniques can be used to
emulate the effects of the underlying faults enumerated in
the Error Model.

The central component of this methodology is the
construction and execution of fault injection campaigns.
Fault injection campaigns are designed to provide fault/error
sensitivities of the system components. The campaigns are
conducted on the operational system, after which the results
are analyzed to determine the effects of the faults (e.g.,
system crash/hang, incorrect result, no apparent effect) and
their associated probabilities.

The Cache Contents Estimator (CCE) is used to deal with
the inability of SWIFI techniques to inject bit flip faults into

the processor’s cache memories. It is, in effect, as special
case of the Emror Model/Hardware Utilization Model
explained above. Faults are injected into an application’s
instruction, data, heap, and stack segments in main memory
to determine the fault behavior statistics of each type of
error. The CCE predicts how much (and which portions) of
ecach of these segments will be in the cache at any given
time. The final error rate for each of these segments in
cache is proportional to its size in unprotected L1 Cache.

Finally, the system reliability and performance model is
constructed using knowledge of the system architecture,
predictions from the fault model, the results of the fault
injection experiments and the CCE results. The model
predicts the system’s reliability and performance in a given
radiation environment. It can be used during system
development to identify appropriate system architectures
and fault tolerance strategies. During fielded operation, the
model can be used to predict the system’s behavior in
changing circumstances and modify it as appropriate (e.g.,
increase checkpointing frequency, uplink fault-tolerant
linear algebra libraries). Once the basic system model has
been created and validated, it is relatively straightforward to
input application software specific fault behavior statistics,
input the mission environmental parameters, and predict
system fault behavior and reliability for a range of fault
tolerance techniques, thus it also provides an early quick
look resource for mission development.



3. JIFI FAULT INJECTION TOOL SET

The JPL Implementation of a Fault Injector (JIFI) tool set
allows fault behavior characterization of an application. It
allows automated campaigns of random uniformly
distributed bit-flip-faults into application registers and/or
memory space. Injection can be targeted to an application, a

The JIFI fault injection tool set provides the application
profiling, fault injection and results verification and
classification as defined above as well as statistical
processing of campaign and multi-campaign data. These
tools are written in either C or Perl scripting language.
Figure 3 shows the tools and their usage.

Figure 3: Fault Injection Tool Set

set of related applications or to specific routines within an
application. Code, stack, heap or data may be targeted for
memory injection and specific registers, register sets, or all
registers may be targeted for register fault injections.

In the case of targeted fault injection, it is necessary to know
the range of memory addresses and registers one wishes to
inject. Profiling the application provides this information. In
the case of random program-wide injection, it is also useful
to be able to map the faults back to where/when they were
injected, i.e.,

What was the program executing when the fault was
injected?

What was at the memory/register location the fault was
injected into?

Application profiling provides the information necessary for
post-injection campaign reconstruction as well.

To characterize the fault injection results, it is necessary to
verify the final result and classify its effect on the system,
i.e., correct output, incorrect output, process crash/hang.

The overall output of this tool set and methodology is to
provide overall SEU fault sensitivity of the application or
portions thereof:

Is the application more likely to crash or produce incorrect
results?

Which subroutines of the program are most vulnerable?

The GNU debugger (GDB) is used to get a dump of the
program's subroutines and global data addresses. This
operating system available tool enables the user to relate
fault and program counter location to actual subroutines of
the application. Another application profiling tool is the
cache emulator, this tool provides the ability to monitor how
the Ll cache behaves as a stream of instruction and
processor main memory references are executed. This tool
basically simulates cache activity and provides information
on how much of the program is in L 1 cache at any point in
its execution or on average.

The JIFI tool provides the fault injection experiment
capability. JIFI is an application-level fault insertion tool
that is used with a user defined configuration file and one or
more execution scripts in order to produce batches of runs
(campaigns). Following a single injection run, it produces an
output file containing: program counter value at injection
time, address injected into, time of injection, and the
application state upon end of the run.

Several tools are used for result classification. A verifier of
some sort must be available to compare the output file
produced by an fault injected run to that produced by a run
with no fault injection (gold-run output file). A simplistic,
first order verifier does a binary compare of the two files
with no tolerance for insignificant errors. For many
applications however, it is more useful to have a verifier that
takes into account the system noise characteristics and



required or useable accuracy. This type of “smart verifier”
is usually provide by the application programmer. The JIFI
output file will have this information appended to it. Based
on the correctness thresholds within the verifier the
application output file is labeled as correct, incorrect, or
incomplete.

The filter tool is applied to the JIFI output files to remove
any runs considered bad from the batch of good runs to
analyze. A run may be considered bad if a fault was not
injected (this occurs rarely, but is possible due to the random
injection method and poor timing resolution of some
systems) or if the output file was corrupted in some way by
the fault injected (this can occur if the injection boundaries
allow injection into areas of application space used by the
JIFI fault injector or other non-application code).

The classify tool determines the classification of each fault
injection run based on input from JIFI and the application
verifier. This information is read from the JIFI output files
of each node and compared against a rule definition file that
defines the classification for all possible combination of
outcomes. Based on this, a run of the application will be
classified as correct, incorrect, crashed, or hung. This result
is appended to the JIFI output file.

Finally the automated data processing is handled by a small
set of tools. The extract tool gathers multiple run data into a
single data file. The resulting file can then be easily
imported into such applications as MS Excel and MS Access
for further analysis. The Virtual Memory Profiler tool labels
the memory and Program Counter (PC) location of each
fault injected with the software module component and
subroutine. The memory profiler requires JIFI output file
and application subroutine and global data information from
the application profiling to produce its results. There is also
a register profiler tool, which gives statistics on the register

usage for a portion of code. This tool gives a count of how
many times each register has been seen in GDB a
disassembly file. This tool provides knowledge about the
register usage of an application and therefore gives further
insight on the classifications statistics seen in register
injection. The merge tool combines the outputs of the
Extract tool with the output of the Virtual Memory Profiler

into a single file and sorts the runs according their
classification. It also displays

summary information that can be captured to a file. The
High Level Classifier allows grouping multiple experiments.
It consists of two functional components, hl_class_mem and
HL Class Reg. hl class_mem sorts the combined data in
the order of software module components and then sorts
them in the order of classification for any type of memory
injection. It also gives statistics on each software module
component according to classification. HL Class_Reg is
used to sort the combined data in the order of register
numbers and then sort them in the order of classification. It
also gives statistics on each register according to
classification.

Figure 4 showes that the tools are used in sequence to come
up with a characterization of the application. This process
can be captured in a high level processing script that can
automate processing batches of data. Following each run,
the application output file is verified against its gold file.
The verification result is appended to the output file. After a
batch of runs are completed there will be x number of output
files (1output file for each run times the number of nodes the
application is running on). These JIFT output files are run
through the filter to weed out the bad injection runs and put
them in a separate directory. Once filtering is complete each
run is classified and the final classification information is
appended to the JIFI output file. Extract will pull out the
user specified JIFI output fields of each run into a file. This
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file will be brought together with the application virtual
memory profile by the merge tool. At the next level the
results of different experiment batches can be put together
using High Level Class to get combined characterization
data.
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Figure 5: Statistical error tests for Correct Runs

There is one final item in the JIFI tool kit. The Statistical
Significance Estimator is used to estimate the confidence
level provided by the campaign. It generates the +/- 2 Sigma
curves against a plot of the running average of result
behavior (incorrect, crash/hang., etc) vs. the number of
injections. If the running average is well behaved and
confined within the 2¢ curves, we can estimate the
confidence level of the experiment as a function of the
number of injection experiments. If the plot is not well
behaved, it is an indication that there are some variables
(e.g., different input images) that cause the fault injection
outcome to be statistically non-stationary. For most of the
“controlled” experimental campaigns we have run to date,
with the same data input condition (e.g., the same input
image) for each run, approximately 1000 injections are
required to reach a reasonable (95%) confidence level.
Figure 5 shows an example of a statistical error test using
the texture segmentation program. It shows the “moving”
average vs. the number of correct runs, obtained from 1000
fault injection runs. For each run, a fault was injected into
the entire application code region. The surprising result is
how well behaved these campaigns have been and how few
injection experiments have been required (approx. 1000 to
1500 injections per fault type per fault area) and how closely
“global level” results have tracked a weighted average of
“modular” injections. The following section defines Global
and Module level fault campaigns, their usage and
construction as well as providing results from a series of
campaigns.

4. FAULT INJECTION CAMPAIGN CONSTRUCTION

The goal of the fault injection campaign is to elucidate the
behavior of the application program in response to the types
of faults it may encounter due to SEU’s (i.e., radiation
induced single and multi-bit transients or “soft errors”) in
the operational environment. What is ultimately desired is a

statistical distribution of fault behaviors for each type of
fault in each region of the application. Fault type, in this
context, refers to the number and location of bits flipped,
and application region refers to a region of code and its
associated data, stack and heap areas. In addition, fault
injection campaigns are also used to determine sensitivity of
a system or system component to various fault types and
rates. Finally, the traditional use of fault injection, i.e., to
test a system for fault coverage, can also be effected with a
fault injection campaign.

For our purposes, we have defined two types of fault
injection campaign: Global and Module.

In Global fault injection, the entire application is treated as a
black box. Its internal structure is not profiled and faults are
injected randomly throughout its memory and register space.
This type of fault injection is the easiest and least expensive
to perform and often provides sufficient data for initial
reliability estimation. For many mission applications, this is
sufficient and no further fault injection experimentation is
required. If we are attempting to understand the probabilistic
behavior of a system to SEU’s, then poisson statistics would
dictate that we inject faults throughout the system randomly
in space and time. If, on the other hand, we are attempting to
determine system fault coverage, then it is preferable to
ensure that the fault is present and active at system execution
time. In the case of code and data segment errors, for
example, it is useful to pre-inject the error and then start the
system. For heap or stack faults, however, this strategy will
not work as the error maybe overwritten prior to use — in
these cases, massive campaigns of random injection may be
necessary.

Module fault injection entails more detailed profiling of the
application and its component routines followed by targeted
fault injection into the various software components. This
type of fault injection is useful for a number of activities:
e development of detailed fault sensitivity maps
e determination of optimal fault detection boundaries
and mechanisms
e development of fault tolerance programming
guidelines
e cataloging of fault effects/sensitivities of reusable
software such as libraries
e development and validation of fault tolerant
reusable software libraries and usage guidelines

Like global fault injection, local fault injection can be done
randomly throughout the execution time or can be more
narrowly focused in time to ensure that the fault will be
activated depending on the goal of the campaign.

Interesting issues to examine with combined local and global
fault injection campaigns include:

Determining if time weighted local random statistic match
random global statistics for a given application program



Determining local error behavior vs. global behavior
correlation with respect to the severity of the erroneous
behavior, e.g., an error in an Fast Fourier Transform (FFT)
may lead to an unacceptably incorrect system output or it
may have no discernable effect. Developing cost effective
analysis and characterization tools methods and tools based
on local fault injection of library components, for example,
is a long-term area of study, which might provide a
significant pay off.
Determination of latent
sensitivities and effects.

fault, and correlated fault

To date, we have not dealt with issues 1 through 4 above
with the exception of a cursory look at weighting local vs.
global statistics per 1 above. Further, to date we have mainly
performed single fault injections. For purposes of the REE
project (i.e., given the mission environments of interest, the
expected fault rates and reliability requirements), these
experiments were deemed to be sufficient for initial system
analysis and modeling. Future work may include additional
experimental work to further investigate issues1-4 above.

Mars Texture Application Fault Injection Campaigns

The following provides an example of a series of fault
injection campaigns used to investigate the behavior of a
proposed scientific data processing package for autonomous
geological exploration of Mars. The function of the
application is the classification of rock type by textural
features.

The fault injection experiments detailed herein were run on
the Mars Texture Segmentation program running under the
Lynx operating system on a Motorola PPC604 cluster. The
texture segmentation program is written using MPI
supporting parallel computing on multiple nodes. For these

experiments only two nodes were used to run the
application. The program reads a rock image. The image is
first transformed by performing an FFT. The transformed
image is then filtered to generate three intermediate images
by iterating a gabor filter and inverse FFT three times with
different filtering parameter. A 2-level k-means classifier
labels each image pixel either O or 1 based on the three
filtered intermediate images. The resultant output file is a
“segmented image” where segmentation is determined by
the texture values assigned to each pixel. The texture
indicates whether the pixel is. part of the rock or a
background region. The segmented or labeled image is
saved into a file. The total run time for this program is
about 20 seconds. On the Motorola PPC604 cluster using 2
nodes, the FFT routine takes about 0.5 s, and Gabor filtering
0.2 s as shown in. The inverse FFT calls the same FFT
function as the forward FFT, and takes the same amount of
time. The k-means classifier takes about 4 s, or in some
cases, about 8 s if the solution does not converge in the first
try. Writing the output label file takes about 10 s. The total
run time is approximately 20 s. The output label file is
needed during the data analysis phase to classify the
outcome of a fault injection. Figure 6 shows the structure
and execution timeline of the application.

For the campaigns discussed herein, the output verifier used
was a simple binary compare. The classifier provides the
following possible classifications:

Correct: Output label file was created and matches with
Gold file

Incorrect: Output label was created but incorrect

Crash: Output label file was not created and JIFI output
reported application crash

Hang: Application was timed out by JIFI after the maximum
time limit

b
39 41 42 47

T o 1
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Execution Time (seconds) 49

l | [ »
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Figure 6: Functional block diagram and timeline of the texture segmentation program
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Overall Application Fault Behavior Statistics

To determine the application’s contribution to the system’s
overall failure rate, reliability and availability, a global
random fault injection campaign was constructed. The
results of this campaign can be combined with fault arrival
information from the radiation fault model and system
performance estimated with a system model in which is
embedded the system fault tolerance strategy and behavior.
For this campaign 3000 single bit faults were injected into
each of the application memory code, stack, data and heap
regions and into all general purpose and floating point
registers. Faults were injected randomly in time and space.
One fault was injected per application execution run. The
application was reloaded for each new run to eliminate fault
accumulation and latent faults. The results of this campaign
are shown in Figure 7.

Figure 7 shows the results (ie., crash, hang, incorrect
output, correct output) of a random fault injection into each
memory segment and the cpu register set. The first, obvious
conclusion is that some 95% of all faults do not result in
erroneous behavior, i.e., they have no effect, thus the
program is relatively robust even without any added fault
protection code. The percentage of Correct runs for memory
regions exceeds the percentage of Correct runs in GPRs.
This is clearly due to the probability of injecting a fault into
a critical area of memory at a critical time vs the probability
of injection into a critical register at a critical time. It is also
clear that the heap dominates the experimental results due to
the fact that the heap region occupies 94.1% of the all
memory regions and that faulty behavior is dominated by
erroneous output. Similary, it is clear that erroneous
bebavior from injections into code result in crashes and
hangs but not erroneous output. The results of these

experiments also show that the percentage of Correct runs in
FPRs injection (not shown in Figure 7) is high. This is
because there is a large number of insignificant bits used in
these calculations. Post-experiment follow up investigation
showd that the number of incorrect runs due to inection in
all FPR bits is approximately the same as the number of
incorrect runs due to injection into sign and exponential bits.
Thus, the Incorrect runs are due to sign and exponential bits
faults. It is clear that even this initial experiment can be used
later to optimize the system fault protection strategy.

Detailed Fault Sensitivity Studies

The second fault campaign set was constructed to study the
sensitivity of each module to faults in its memory and
register regions (note that not all registers are used by any
given software module). In this set of experiments, a single
bit fault was injected per application run and runs were
reloaded between executions to flush out latent faults. The
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faults were injected randomly throughout the memory and
register regions used by the module (e.g., FFT, IFFT, k-
means, Gabor), during module execution. Figure 8 shows
typical the results of this campaign.

Figure 8 shows the sensitivities of different modules. The
obvious conclusion of the sensitivities of the modules is that
Gabor code is more sensitive than k-means code and FFT
code.

A third fault injection campaign was constructed to study the
effect of fault latency and to get a more complete
understanding of the sensitivity of code and data segments to
single bit faults. In this campaign faults were inserted prior
to execution of the module. Faults were single bit and were
inserted randomly into module data, stack, heap, code and
registers used by the module. The Gabor and k-means code
regions of Figure 9 show typical results of this campaign.

As can be seen, Gabor and k-means code have greater
percentage of crash/hang and incorrect than the FFT code as
the faults are injected prior their execution.

A worst case average for module sensitivity, (and a
reasonable upper bound for purposes of system analysis) can
be estimated by adding the results of latent fault injection for
module code and data segments from to the results of
random fault injection for module stack and heap. In this
case the module is guaranteed to experience all code and
data faults and has a reasonable probability of experiencing
heap and stack faults.

Figure 9 is an artificial test constructed to illustrate the

above. Figure 9 graphs the results of an experiment in which
faults were randomly injected throughout the application
during FFT execution time. As seen in the figure, Gabor and
k-means code injection experiments yield significantly
higher failure rates than FFT code injections for reasons
explained above. FFT heap segment also resulted in a high
failure probability as expected from this injection procedure.
Note that FFT data segment injections did not result in a
high failure probability due to the fact that this data is static
and therefore random injections (like random code
injections), minimize the probability of introducing an
erroneous datum (instruction) during module execution.

44  System Level Fault Tolerance Estimation and
Validation

For those applications or mission phases in  which
guaranteed correct results with bounded real time operation
is required, a Triple Modular Redundant (TMR) or, in some
cases, Quad Modular Redundant (QMR) system
configuration can be use. Assuming a fault rate which is
large compared to program execution (or system cycle) time,
the probability of such a system experiencing a failure is
astronomically high. A system was designed in which a
software implemented Byzantine resilient QMR core was
used to provide a reliable system management function
which, in turn implemented a temporal TMR fault tolerance
strategy for critical applications. In the temporal TMR
system implemented for this investigation, the application
program is run three times in succession on the same nodes.
The results of each run are stored as named files in system
mass memory. After three executions of the application



Table 1: Example Fault Injection Campaign for Validation

Experiment Total Region Number of | Number of | Number of Fault
Number Nodes Faults Injected Runs per
of Runs Job

Nominal operation without any fault & 1000 None 1 0 3

no JIFL

Application execution without any fault | 1000 None 1 0 3

& JIFL

Application execution with Single Fault | 1000 Registers 1 1 3

injected in registers. (GPRs)

Application execution with Single Fault | 1000 Code 1 1 3

injected in application code.

Application execution with Single Fault | 1000 Heap 1 1 3

Injected in application heap.

Application execution with Single Fault | 1000 Stack 1 1 3

injected in application stack.

Application execution with Single Fault | 1000 Data 1 1 3

injected in application data.

Application execution with Multiple 1000 Code 1 2 3

Faults injected in application code.

Application execution with Multiple 1000 Memory 1 2 3

Faults injected in All Memory.

Application execution with Multiple 1000 Registers 1 2 2

Faults injected in registers. (GPRs)

Application execution with Multiple 1000 Memory and | 1 2 2

Faults injected in memory and registers. Registers

Application execution with Multiple 1000 Memory and | 2 2 3

Faults injected in memory and registers. Registers
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Figure 10: Experiment Results

program, the results are voted by the reliable QMR core.
The results are classified as successful or failed. The
application execution is declared to be unsuccessful (failed)
if:

e No labeled output file is created due to hang or

Al_Mem: Reg:  Mem = Mem

Code:
1fault 2faults 2faults 2faults & Reg: &Reg:
1node 1node 1node 1node 1node 2nodes

crash for all the three executions

All three labeled files are different
Only one label file is generated

Two different label files are generated



Table 2: Job Level Results of Fault Injection Campaign from Table 1

Type of Experiment Number of Correct Number of Successful | Number of Failed Jobs
(See Table 1) Label Files out of 999 Jobs
Runs
No JIFI 999 333 0
JIFI, no faults 999 333 0
Reg: 1 fault, 1 node 921 322 11
Code: 1 fault, 1 node 985 333 0
Heap: 1 fault, 1 node 982 333 0
Stack: 1 fault, 1 node 990 333 0
Data: 1 fault, 1 node 998 333 0
Code: 2 faults, 1 node 950 328 5
All Mem: 1 node 924 328 5
Reg: 2 faults, 1 node 835 311 22
Mem & Reg: 1 node 872 322 11
Mem & Reg: 2 nodes 641 237 96
To validate the above system, a campaign was designed to
inject both single and multiple faults into the application  Model Description

processors, to independently assess the correctness of the
output against a “gold run” with the standard binary verifier,
and to then determine the correctness of the QMR core voter
output. In the process, the global fault injections were
repeated and their results compared to the initial global fault
injection campaign results. In addition, it was desired to
collect statistical data which could be used in a system
model to determine, for the mission environment, the overall
system reliability where reliable operation is defined as
providing a correct answer within the maximum allocated
time, i.e., the time required for the system to execute 3 runs,
vote and relay the result.

The campaign consisted of the experiments listed in Table 1:

Figure 10 shows the run level results. From Figure 10,
results of this campaign, as expected, are similar to those of
the original global fault injection campaign described in 4.2.

Table 2 shows the job level results. In all cases, the voter
results were correct. The data from Table 1 was then used

to provide state transition probabilities to a system level
Markovian model which was in turn driven by the
environmental fault rates predicted for the mission
environment. Section 5 explains the system model.

5. SYSTEM RELIABILITY MODEL

A discrete-state, discrete-time Markov model was developed
to predict the behavior of the system in the presence of
SEUs in specific radiation environments. The construction
of the model, model results, and assumptions made in
constructing the model are described in the following
paragraphs.

The basic building block of the reliability model is shown
below in Figure 11. The system starts by setting up

Reliability Model
Basic Element

4 L

Incorrect No Correct
Result Result Result
Output Output Output

Figure 11: Reliability Model Basic Element

the application for its next run. During that run, a fault may
or may not be injected into the application. If a fault is
injected into the application, the application may either
crash or hang, produce an incorrect result, or exhibit no
observable effects of the fault. If no fault is injected, the
application is assumed to operate correctly (see
“Assumptions” below in this Section) and produce a correct
result. The probabilities of encountering a fault during a
single execution of an application in a given radiation
environment are computed from the fault rates for that
environment, assuming that the arrival of faults is described
as a homogeneous Poisson process (see “Assumptions”
below). The probabilities that an injected fault will result in
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Figure 12: System-Level Reliability Model

the application crashing or hanging, producing an incorrect
result, or experiencing no apparent effect, are determined
from the results of the fault injection experiments.

For the fault injection campaigns conducted for REE, the
application was run under a simple fault tolerant executive.
The executive ran the application three times, after which
the results were voted. If two of the three runs of the
application produced identical results, that result was
accepted as correct. Given the radiation environments for
representative space missions, this would almost always
allow only correct results to be output. Incorrect final
results would only be produced if two of the three runs
encountered faults and suffered identical effects leading to
incorrect output. If, on the other hand, two matching results
could not be found, no final result would be produced. This
would be the situation if two out of three runs encountered a
fault and crashed or hung, if one run crashed or hung and
another produced an incorrect result, or two runs
encountered faults and produced different sets of incorrect
results.

The system-level model is constructed from the basic
element as shown in Figure 11. The triangle in Figure 12
represents the basic element shown in Figure 11. The
application runs once, after which it can crash or hang,
produce incorrect output, or experience no fault effect.
Regardless of the ending state of the first run, the
application is reloaded and run again (represented by the
second row of triangles in Figure 12) after which it is
reloaded and run for the third and final time (third row of
triangles in Figure 12). After the application has run three
times, the results of the three runs are voted. The voting
algorithm will either produce a correct final result, an
incorrect final result, or no final result. For the purposes of
the reliability, the latter two states are considered to be
failure states.

The final model was fairly simple, having only 81 states.
However, it was useful in showing at a high level how the

system would behave in different radiation environments.

Model Results

The system reliability model was used to estimate the
system’s behavior in a variety of radiation environments.
We observed a wide range of behavior — in some
environments, the estimated probability of the system’s
surviving for a 5-year period was over 95%. This is shown
in Figure 13, representing the way in which the system’s
reliability changes over a 300 weeks period in a deep space
environment at Solar minimum with no solar flares. On the
other hand, the estimated probability of the system surviving
for one day without experiencing a radiation-induced error
in the case of a solar flare was substantially less than 0.1.
The way in which the system reliability changes over a 20
hours period in this environment is shown below in Figure
14.

Assumptions and Model Limitations

The reliability model assumes the following system
characteristics and environmental conditions:

1. The occurrence of faults follows a Poisson
distribution. The mean of the distribution is
obtained from the radiation testing results.

2. In computing the probability of encountering a fault
during a run, the probability of encountering one or
more faults during that run is computed. For low
fault rates, this is very close to the probability of
encountering exactly one fault during the run. For
higher fault rates, this provides a more accurate
characterization of the environment in which the
system will be operating.

3. The effects of multiple faults in one run are
assumed to be independent of one another.
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Although this assumption may not be correct, it
does make construction of the model tractable.

Main memory and L2 cache are protected against

occurrences of single errors, and can detect two-bit
errors. We only considered the effects of radiation-
induced faults on the processor, including L1
cache. It is likely that this resulted in a reliability
estimate higher than which would be observed
under actual operating conditions. However, there

was not sufficient experimental data to consider the
effects of radiation-induced faults in other
components (e.g. memory management unit, ALU).
The system software has a reliability of 1. Although
this is unlikely to be the case, it simplified the
construction of the model. Note that a software
reliability estimate could be assigned to the
transition from the “No Fault Injected” state to the
“No Error” state shown in . Numerous methods of



estimating the reliability of a software system have
been devised over the past several years
[“Handbook of Software Reliability Engineering”,
ISSRE98 Paper]. It is likely that more accurate
estimates of the reliability of a system which
includes software implemented fault tolerance and
one or more applications would result from using
these techniques. However, determination of the
reliability of the application or the fault tolerance
software was beyond the scope of our activities.

6. CONCLUSIONS AND FUTURE WoORK

An initial tool set and methodology have been developed to
estimate system reliability, availability and performance
under mission environmental conditions. Although neither
the tool set, nor the experiments are yet completed, early
results are promising. Experimental results from first use
indicate that COTS hardware can be used with good
reliability in benign space environments such as the surface
of Mars, Low Earth Orbit or Deep Space in a non-solar flare
condition, without extensive fault tolerance development.
With the addition of relatively ~straightforward fault
detection and mitigation strategies, high reliability can be
achieved at relatively low cost for many NASA missions.
Future work will include: completion of the tool set;
definition and execution of extensive fault injection
campaigns encompassing both the application and the OS,
and including error injection to simulate the effects of faults
into uninjectable subsystems; higher fidelity systemn
performability models; validation of the models and
experimental results through space based testing.
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